超声波清洗源于二十世纪六十年代,自超声波技术问世以来,科学家们发现:一定频率范围内的超声波,作用于液体介质里,可以达到清洗的作用。
经过一段时间的研究和试验,不仅得到了满意的效果,而且发现其清洗效率较高,由此超声波清洗机被逐渐运用于各行各业中去。超声波作用于液体中时,液体中每个气泡的破裂会产生能量较大的冲击波,相当于瞬间产生几百度的高温和高达上千个大气压,这种现象被称之为空化效应,超声波清洗正是应用液体中气泡破裂所产生的冲击波来达到清洗和冲刷工件内外表面的作用。超声波清洗的主要机理是超声波空化作用,超声波空化的强弱与声学参数、清洗液的物理化学性质及环境条件有关,要获得良好的清洗效果必须选择适当的声学参数和清洗液。
超声波声强或声压的选择在清洗液中只有交变声压幅值**过液体的静压力时才会出现负压,在超声清洗槽中的声强要**空化阈值才能产生超声空化。对于一般液体,空化阈值约为每平方厘米1/3瓦(声压的千方正比于声强).声强增加时,空化泡的较大半径与起始半径的比值增大,空化强度增大, 即声强愈高,空化愈强烈,有利于清洗作用。但不是声功率越大越好,声强过高.会产生大量无用的气泡,增加散射衰减,形成声屏障,同时声强增大也会增加非线性衰减,这样都会削弱远离声源地方的清洗效果。对于一些难清洗干净的污物,例如金属表面的氧化物,化纤喷丝板孔中污物的清洗,则需要采用较高的声强.此时被清洗面应贴近声源,这时大多不采用槽式清洗器.而用棒状聚焦式换能器直接插入清洗液靠近清洗件的表面进行清洗。